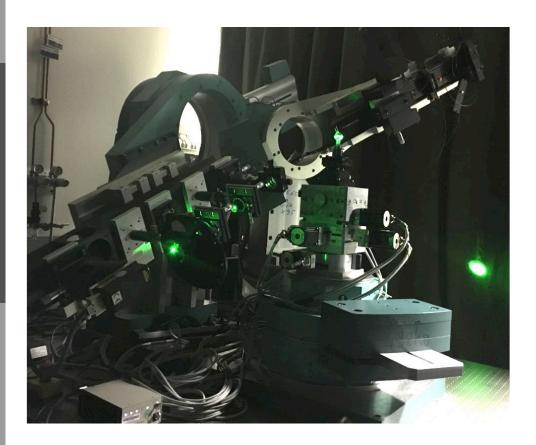
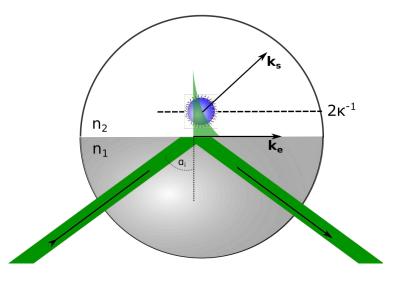
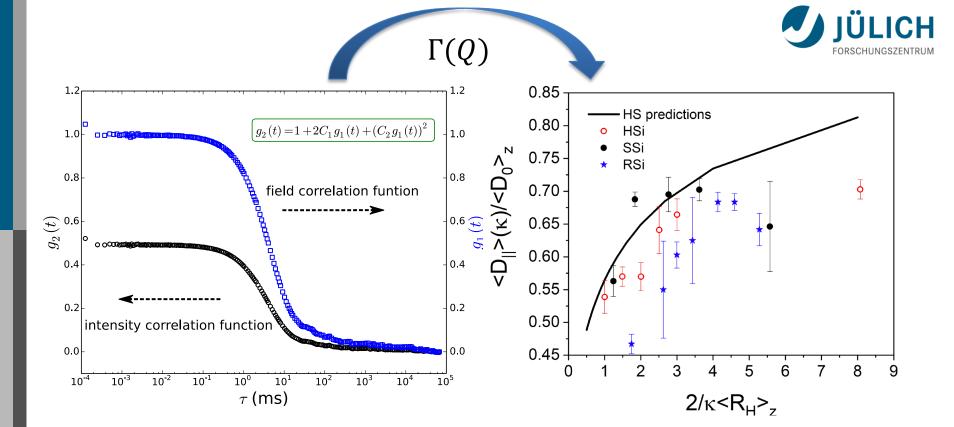

The effect of particle shape and interaction on the near-wall dynamics


Yi Liu
Institute of Complex System (IBI-4)


glied in der Helmholtz-Gemeinscha

EWDLS for interface dynamics



$$Q = k_s - k_e$$

$$2\kappa^{-1} = \frac{\lambda_0}{2\pi\sqrt{(n_1 \sin \alpha_i)^2 - n_2^2}}$$

Generality

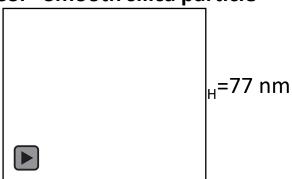
- Particles are slowed down at interface due to hydrodynamic interaction.
- The larger the penetration depth, the weaker the slow-down effect.

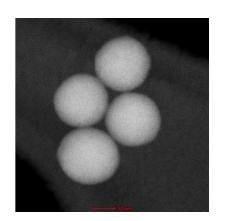
Limitation

- The correlation function is the only source of information
- Dynamic behavior is impacted by static properties
- Static information cannot can not be directly discerned from dynamic information.

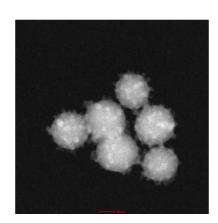
itglied in der Helmholtz-Gemeinsc

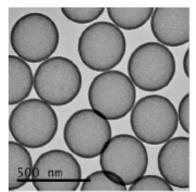
Nothing in life is a hard sphere




- Static interaction with the wall
 - van der Waals attraction
 - electrostatic repulsion
 - gravitational contribution
- Polydispersity
 - happens in synthesis of model systems
 - inevitable and non-negligible in biological samples
- the devil is in Aggregation
 - size of aggregates
 - percentage of aggregates
- Particle shape and morphology
 - e.g. core/shell

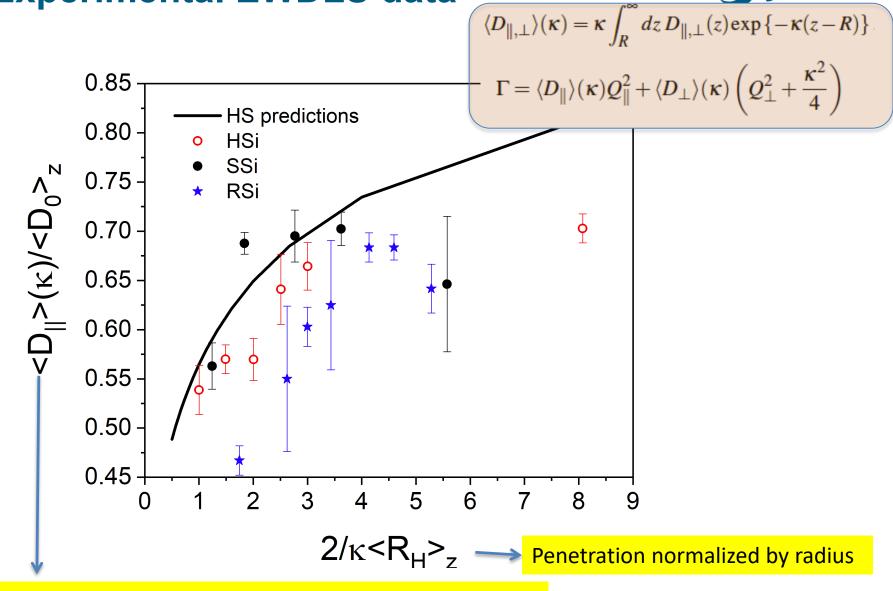

Three systems under investigation





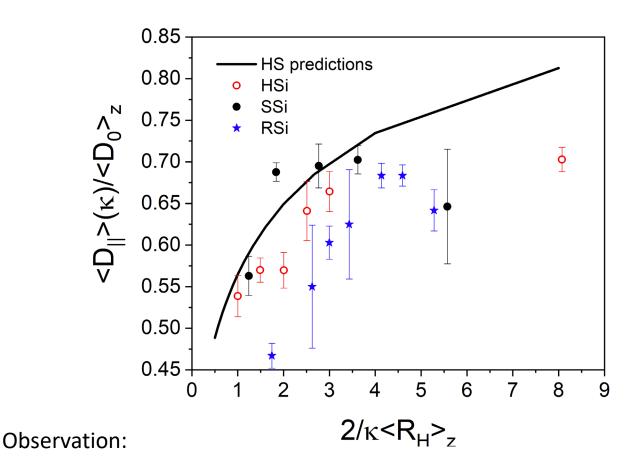
rticle.

k_H=86 nm


HSi -- Hollow silica particle.

 $R_H = 154 \text{ nm}$

All samples are dispersed in pure water
Debye length 100 nm
Samples are gently centrifuged (800 rpm for 16 hours)
before measurements to spin down potential aggregates



interfacial diffusion is normalized with bulk diffusion D₀ unitless

ditglied in der Helmholtz-Gemeinsc

Experimental EWDLS data

- SSi agrees with HS prediction except for the outlier at high penetration depth;
- HSi is systematically slightly slower than the HS prediction;
- RSi is significantly slower than HS prediction.
- The observation is contrary to hydrodynamic theories.
- The observed effect is likely to come from static interaction.

litglied in der Helmholtz-Gemeinsc

Model calculation

Hard sphere

$$\langle D_{\parallel,\perp}\rangle(\kappa) = \kappa \int_{R}^{\infty} dz \, D_{\parallel,\perp}(z) \exp\left\{-\kappa(z-R)\right\}.$$

$$\Gamma = \langle D_{\parallel}\rangle(\kappa) Q_{\parallel}^{2} + \langle D_{\perp}\rangle(\kappa) \left(Q_{\perp}^{2} + \frac{\kappa^{2}}{4}\right)$$

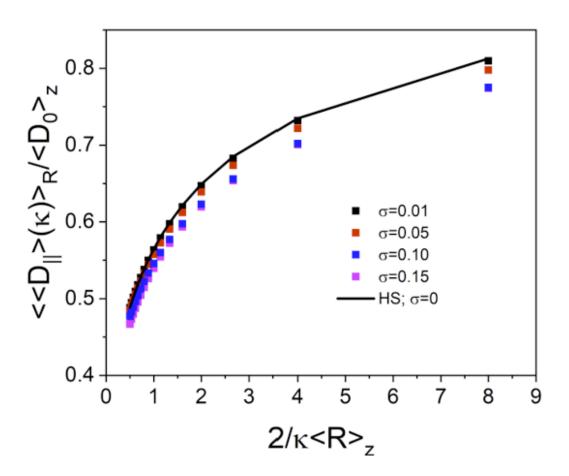
Static particle-wall interaction

$$\Gamma = \frac{\int_{R}^{\infty} dz \exp\left\{-\beta \Phi(z)\right\} \exp\left\{-\kappa z\right\} \left[D_{\parallel}(z)Q_{\parallel}^{2} + D_{\perp}(z)\left(Q_{\perp}^{2} + \kappa^{2}/4\right)\right]}{\int_{R}^{\infty} dz \exp\left\{-\beta \Phi(z)\right\} \exp\left\{-\kappa z\right\}}$$

the number density becomes a function of z when particle interacts with wall

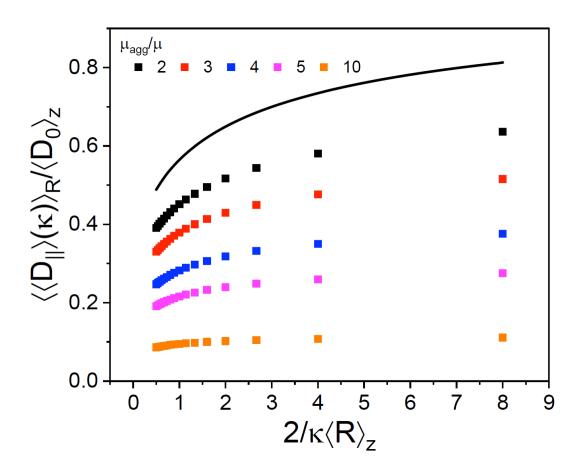
Polydispersity and aggregation plus potential

$$\langle \Gamma \rangle_{R} = \frac{\int_{0}^{\infty} dR B_{nw}^{2}\left(Q, \kappa, R\right) P(R) \int_{R}^{\infty} dz \exp\left\{-\beta \Phi(z)\right\} \exp\left\{-\kappa z\right\} D(Q, \kappa, R)}{\int_{0}^{\infty} dR B_{nw}^{2}\left(Q, \kappa, R\right) P(R) \int_{R}^{\infty} dz \exp\left\{-\beta \Phi(z)\right\} \exp\left\{-\kappa z\right\}} \exp\left\{-\kappa z\right\}$$


the near wall form factor does not cancel for the expression of Gamma.

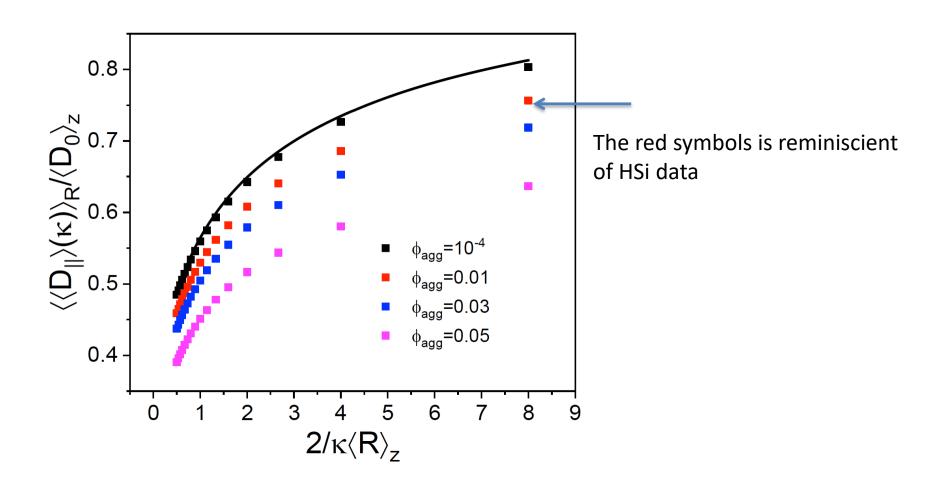
tglied in der Helmholtz-Gemeinsc

Model calculation: Polydispersity


- Polydispersity is modeled by a Gaussian distribution
- μ: mean value. σ: relative standard deviation
- Spherical particles with Gaussian size distribution, interacting only with excluded volume
- Polydispersity less than 10% has a negligible influence on near-wall dynamics.
- The silica particles under study have a polydispersity far blow 10%

Model calculation: Aggregation

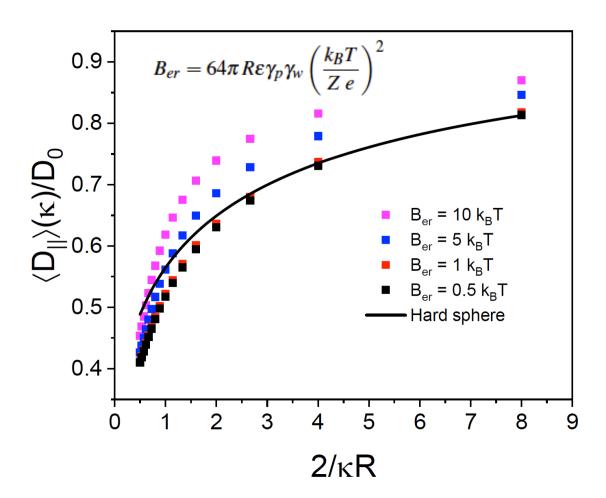
- Aggregation is modeled by a bimodal Gaussian distribution: $\mu + \mu_{agg}$
- Variation of aggregate size, μ_{agg} , at fixed volume fraction 5%.
- Presence of small aggregates (μ_{agg} =2 μ) greatly slows down near-wall dynamics.



glied in der Helmholtz-Gemeinsc

Model calculation: Aggregation

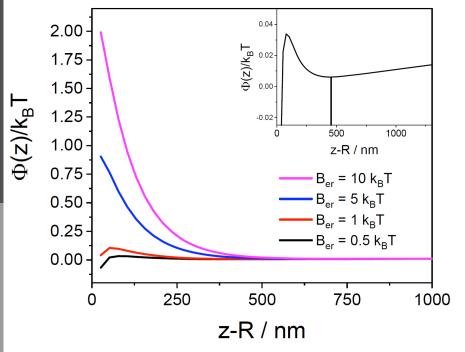
- Aggregation is modeled by a bimodal Gaussian distribution: $\mu + \mu_{agg}$
- Variation of volume fraction of aggregates at fixed size μ_{agg} =2 μ .
- 1% of aggregates will slow down dynamic significantly.

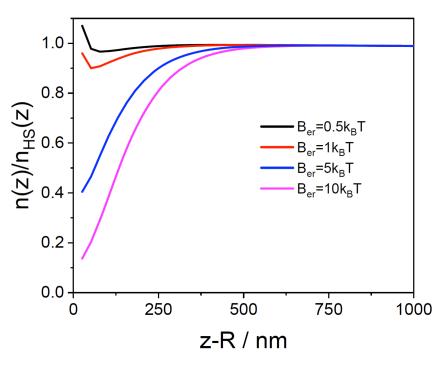

Model calculation: static interaction

$$\Phi(z) = \Phi_{vdW}(z) + \Phi_{er}(z) + \Phi_{g}(z)$$

fixed van der Waals and gravitation, various electrostatic interaction, monodisperse R=100 nm, A_{H} =0.5 k_{B} T, $\Delta \rho$ =1g/mL

Electrostatic repulsion accelerates near-wall dynamics.


Model calculation: static interaction

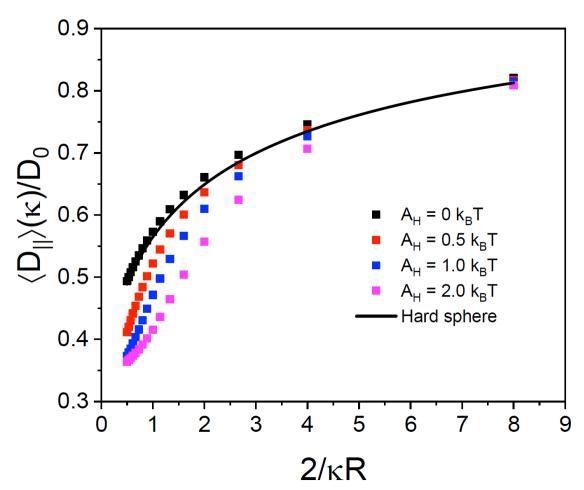


$$\Phi(z) = \Phi_{vdW}(z) + \Phi_{er}(z) + \Phi_{g}(z)$$

R=100 nm, A_{H} =0.5 K_{B} T, $\Delta \rho$ =1g/mL

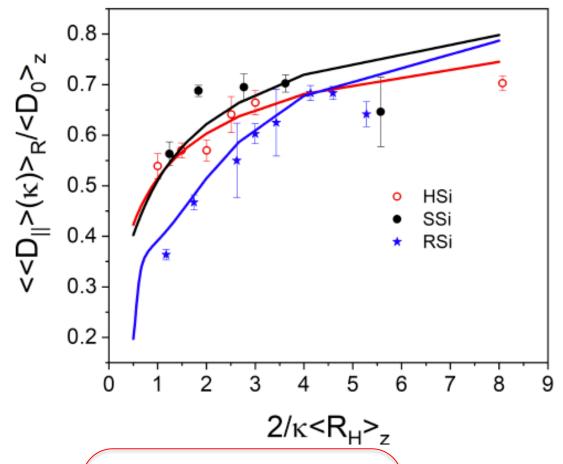
- Particle number density is no longer homogeneous at wall, due to static interaction.
- At higher B_{er}, the near wall area (3*R) is depleted of particles.
- If the B_{er} is smaller than A_H, an enrichment of particles occurs near the wall.

- Static interaction changes the number density of particles at wall
- Particles closer to the wall are slowed down more strongly


itglied in der Helmholtz-Gemeinsc

Model calculation: static interaction

$$\Phi(z) = \Phi_{vdW}(z) + \Phi_{er}(z) + \Phi_{g}(z)$$


- fixed electrostatics and gravitation, various van der Waals interaction, monodisperse
- R=100 nm, $B_{er}=1 k_B T$, $\Delta \rho = 1 g/m L$
- Van der Waals attraction slows near-wall dynamics.

Mitglied in der Helmholtz-Gemeinschaft

Comparison to experimental data

Particle type	$< R_H >_z$ nm	σ	B_{er} k_BT	$A_H k_B T$	ϕ_{agg}
SSi	71	0.05	1.5	0.5	5×10^{-3}
HSi	154	0.05	1.0	0.25	0.03
RSi	80	0.05	1.5	2.75	5×10^{-3}

Conclusion

- Model calculation:
 - Effect of polydispersity less than 10% is negligible
 - Aggregates have a major effect on the data interpretation
- In comparison with experiments
 - For the SSi and HSi system, very good agreement can be obtained by including a small fraction of aggregates and a particle-wall DLVO interaction
 - For the RSi system, at least a five times higher Hamaker constant needs to be taken into account to match the calculated data to the experimental results

Particle	$< R_H >_z$	σ	B_{er}	A_H	ϕ_{agg}
type	nm		k_BT	k_BT	
SSi	71	0.05	1.5	0.5	5×10^{-3}
HSi	154	0.05	1.0	0.25	0.03
RSi	80	0.05	1.5	2.75	5×10^{-3}

ernemschall

Mitglied in der Helmholtz-Gen